

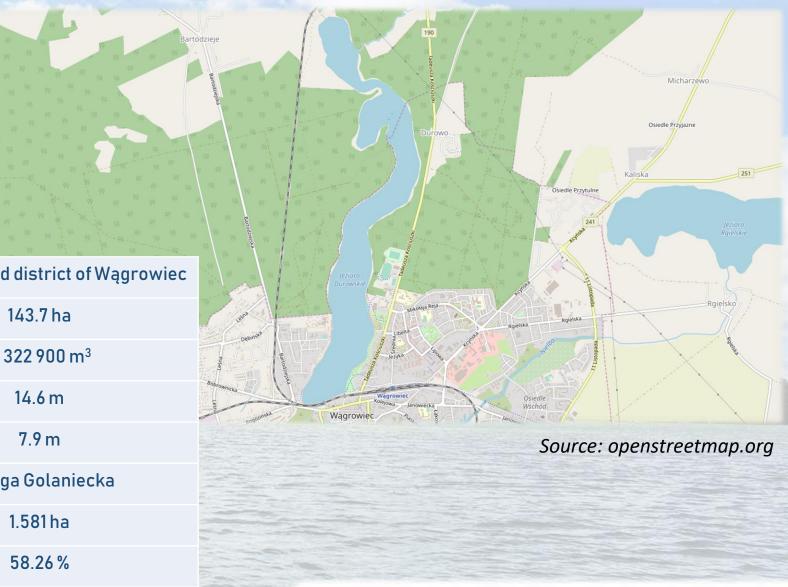
Macrophytes as an indicator of environmental change in Durowskie Lake, Poland

Marcin Remlein, Adam Berezowski, Marek Kilon, Magdalene Behrens Prof. Dr. hab. Ryszard Gołdyn

Contents

- Introduction
- Material and methods
- Results & Discussion
- Conclusions & Recommendations

Introduction



Area of study

Durowskie Lake

25		19 19 19 19 19 19 19 19 19 19 19 19 19 1
	Location	Commune and district of Wągrowiec
	Surface	143.7 ha
	Volume	11 322 900 m ³
	Maximum depth	14.6 m
	Average depth	7.9 m
	Main tributary	Struga Golaniecka
	Surface in direct catchment area	1.581ha
	Share of agricultural area	58.26 %
	Share of forests	33.52 %
	Urbanareas	8.25 %
-		

From Macrophytes report 2017.

Macrophytes

- Macrophytes have a significant impact on the water quality of lakes
 - Long-term uptake of nutrients
 - Provision of good conditions for filtration from catchment sediments
 - Stabilisation of surface of the beds
 - Provision of a huge surface area for attached periphyton growth
 - Transfer of oxygen to rhizosphere by leakage from roots
 - Provision of habitat for zooplankton, fish and other wildlife species
 - Aesthetical contribution

Objectives

- What macrophyte associations are growing in and at the shoreline of Lake Durowskie?
- What size is each association constituting?
- What proportion are the submerged species constituting?
- Comparison to previous years
- What information can be drawn from changing sizes of indicator associations?
- Are the restoration treatments for improving the lake's water quality effective?

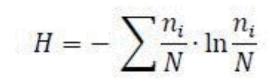
Methods & Materials

Data Collection

- Date: 24.-29.07.2019
- Identification of plant associations acc. to Braun-Blanquet
- Estimation of size
- Mapping with GPS device
- By boat and by foot
- Anchor for submerged species

Data analysis

- With QGIS, ArcGIS and MS Office
- Size and amount of plant areas
- Calculation of the ESMI and MIR indices
- Total percentage areas



ESMI

Ecological State Macrophyte Index

- H diversity index of phytocenosis
- n_i area of polygons one of association in percent per cover
- N all cover of macrophytes
- H_{max} coefficient of variation of the theoretical maximum
- S number of associations
- Z occupancy index
- isob2.5m area of littoral limited by isobath 2.5 m
- P area of the lake

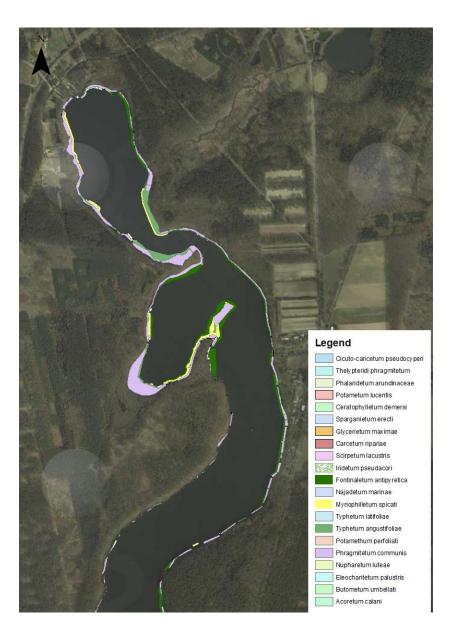
$$ESMI = 1 - \exp\left[-\frac{H}{H_{max}} \cdot Z \cdot exp\left(\frac{N}{P}\right)\right]$$

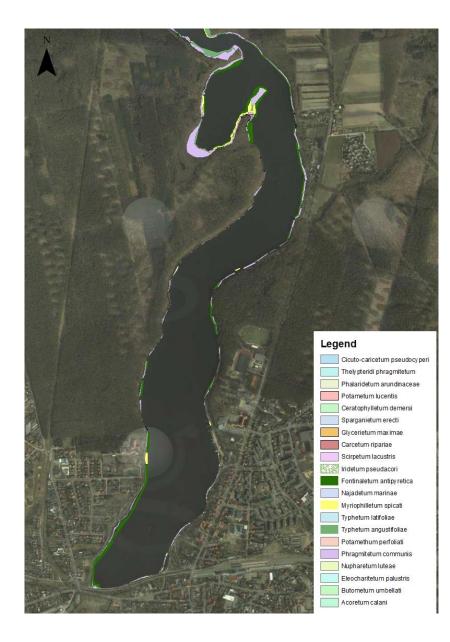
MIR – Macrophyte Index of Rivers

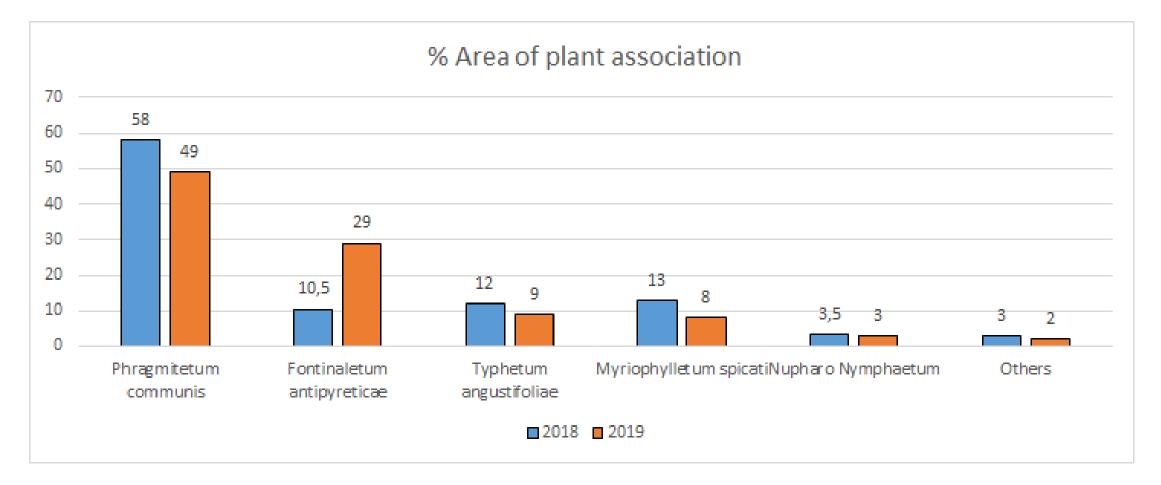
$$MIR = \frac{\sum L_i * Wi * Pi}{\sum W_i * Pi} * 10$$

- L and W are indicator values for each species
- P = percentage coverage (split into discrete categories) for that species

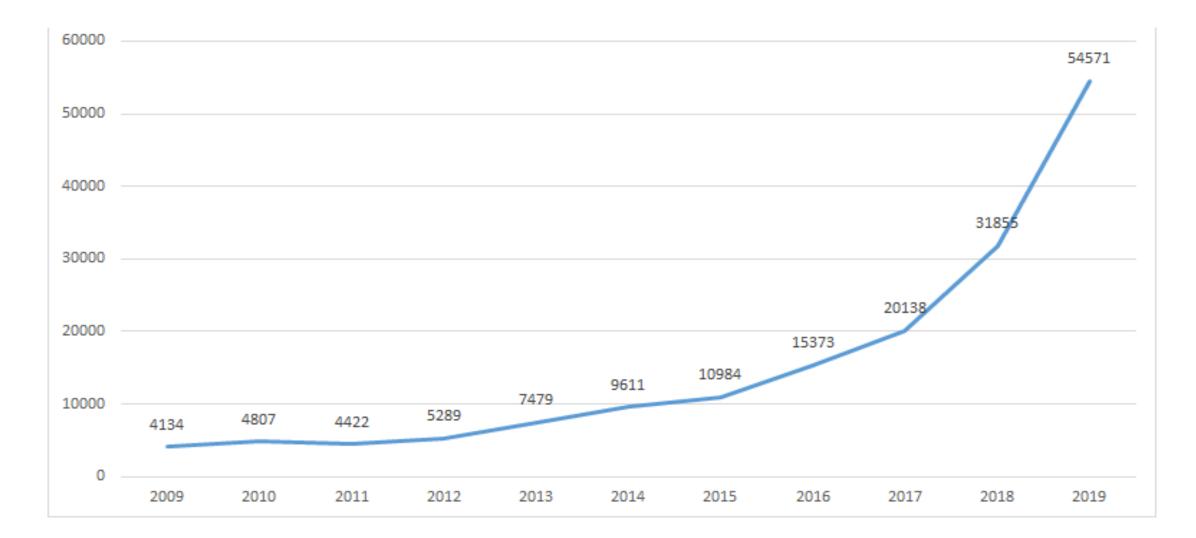
Results & Discussion

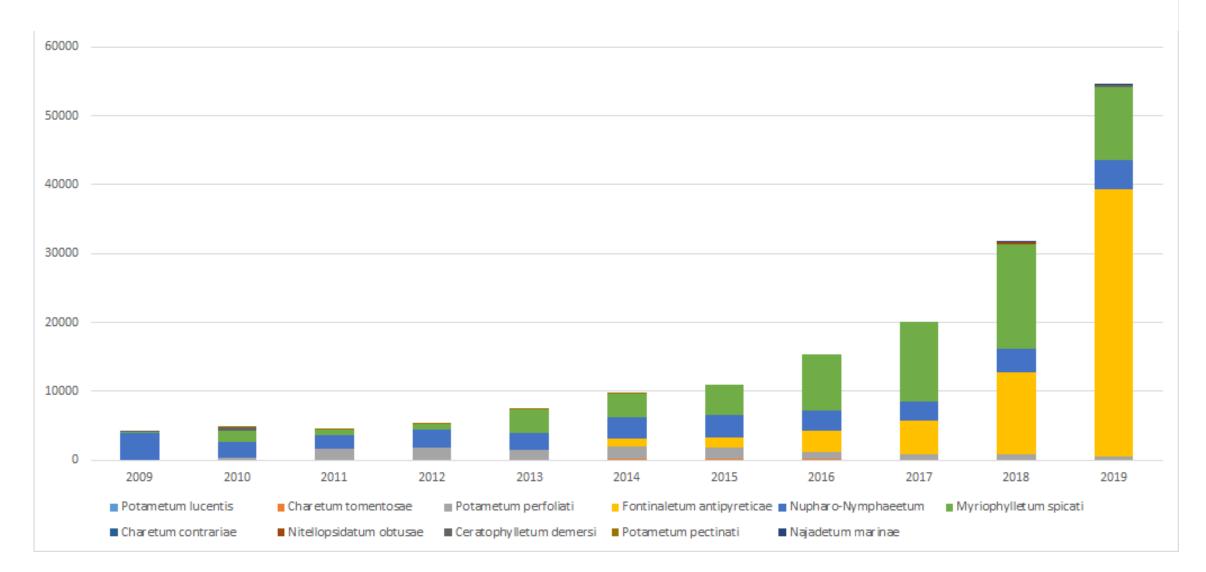



Name association	Total [m²]	% area	
Phragmitetum communis	64758,94	49%	
Fontinaletum antipyreticae	38945,9	29%	
Typhetum angustifoliae	11937,49	9%	
Myriophylletum spicati	10597,54	8%	
Nupharo-Nymphaeetum	4146,796	3%	
Acoretum calami	669,3275	1%	
Potametum perfoliati	462,7843	0%	
Ceratophylletum demersi	398,954	0%	
Caricetum ripariae	379,117	0%	
Sparganietum erecti	292,7012	0%	
Scirpetum lacustris	83,40309	0%	
Glycerietum maximae	80,36526	0%	
Thelypteridi-Phragmitetum	50,0866	0%	
Butometum umbelati	45,79725	0%	
Cicuto-Caricetum pseudocyperi	16,63538	0%	
Typhetum latifoliae	16,58997	0%	
Potametum lucentis	14,0287	0%	
Eleocharitetum palustris	13,0189	0%	
Najadetum marinae	5,697873	0%	
Iridetum pseudacori	3	0%	
Phalaridetum arundinaceae	2,5887	0%	
Charetum tomentosae	0	0%	
Caricetum acutiformis	0	0%	
Nitellopsidetum obtusae	0	0%	
Charetum contrariae	0	0%	
Total	132522	100%	

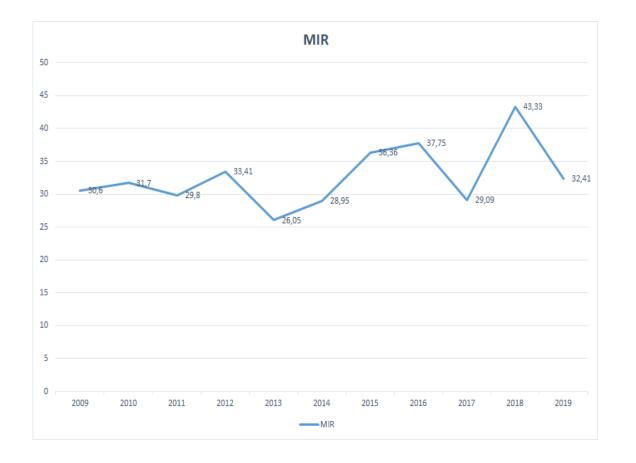

Fontinaletum antipyreticae Source: summer school 2018

Nupharo-Nymphaetum




Comparison 2018 and 2019 of five most represent plant associations

Total area of submerged macrophyte associations



Comparison of area occupied by submerged macrophytes (2009-2019)

Ecological status	ESMI Index	MIR Index
Very good	≥ 0,680	≥44.5
Good	≥ 0,410	44.5-35.0>
Moderate	≥ 0,205	35.0-25.4>
Poor	≥ 0,070	25.4-15.8>
Bad	< 0,070	<15.8

Development of MIR and ESMI

Conclusions & Recommendations

- Lake in poor ecological status acc. to ESMI
- Ceratophylletum demersi appeared
- Charophytes associations disappeared
- Submerged species increased
- Restoration treatments work to a certain amount; climate conditions (temperature and precipitation) might have a changing effect on water quality
- Further improvement of water transparency is necessary
- Minimising or stopping sewage inflow \rightarrow checking new houses
- Acc. to MIR river in bad conditions
 - Cleaning river from rubbish
 - Restoration of rain water basin at outflow

References

Annex

